This article was downloaded by:


On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SPECTROSCOPIC STUDY ON THE ELECTRON DELOCALIZATION WITHIN THE PHOSPHAZO RING

I. M. Abd-ellah^a; Y. Al-shaibi^a; A. A. Ba-issa^a; M. S. El-hammadi^a

^a Chemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen

To cite this Article Abd-ellah, I. M. , Al-shaibi, Y. , Ba-issa, A. A. and El-hammadi, M. S.(1998) 'SPECTROSCOPIC STUDY ON THE ELECTRON DELOCALIZATION WITHIN THE PHOSPHAZO RING', Phosphorus, Sulfur, and Silicon and the Related Elements, 139: 1, 29-43

To link to this Article: DOI: 10.1080/10426509808035675 URL: http://dx.doi.org/10.1080/10426509808035675

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SPECTROSCOPIC STUDY ON THE ELECTRON DELOCALIZATION WITHIN THE PHOSPHAZO RING

I. M. ABD-ELLAH*, Y. AL-SHAIBI, A.A. BA-ISSA and M.S. EL-HAMMADI

Chemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen. P.O.box 11220 Sana'a, Yemen

(Received 2 December, 1996; In final form 14 March, 1997)

Interaction of hexachlorocyclodiphosph(V)azanes (1) with some aminocompounds such as aniline,o-aminophenol,p-toluidine,p-anisidine,p-chloroaniline,2-aminothiazol in acetonitrile furnished geminal aminocylcodiphosph(V)azanes of type (II_{a-x}). Reaction of these products with sulfur (solid) led to the formation of the disulfo-derivatives of type(III_{a-g}). The structure of the isolated substances was proposed on the basis of microanalytical data, infrared, ¹H n.m.r., and mass spectra. Ultraviolet studies on the electron delocalization within the four-membered ring of the dimeric structure were also discussed.

Keywords: cyclodephosphazane; disulfo derivatives; Nmr; UV; mass spectra

Although the synthesis of geminal and non-geminal aminocyclodiphosphazanes has been repoited⁽¹⁻²⁾ little is known about the affecting of the electron delocalization within the four membered ring by inductive and mesomeric effects.

EXPERIMENTAL

Microanalytical analyses were carried out by the microanalytical laboratory, Cairo University. Infrared spectra were recorded on a PYE-Unicam SP3-300 spectrophotometer (KBr technique). Ultraviolet spectra were recorded on shimadzu Uv.vis recording spectrophotometer. ¹H n.m.r. spectra were measured on a Varian EM-360L, 200 Mhz spectrophotometer,

^{*} Author whom all correspondence should be sent.

and mass spectra were measured out using a Finnigan MAT 1125 mass spectrometer by the direct inlet system.

STARTING MATERIALS

The preparation and purification of hexachlorocyclodiphosphazanes (I_{a-e}) has been reported ⁽²⁻⁴⁾ All the amino compounds used were B.D.H reagent grade products.

SYNTHESIS OF AMINOCYCLODIPHOSPH(V)AZANE DERIVATIVES (II_{A-x}) GENERAL PROCEDURE

The solid amino compound (0.01 mole) was added in small portions to a well stirred solution of the hexachlorocyclodiphosph(V)azane (I_{a-e}) (0.005 mole) in 100 ml acetonitrile during ½ hour. After the addition was complete, the reaction mixture was heated under reflux for two hours with continuous stirring. After the completion of the reaction (HCl gas ceased to evolve) the reaction mixture was filtered while hot and the solid obtained was washed several times with acetonitrile, diethylether and dried in vacuo to give the corresponding aminocyclodiphosph(V)azane derivatives (II_{a-x}), the data obtained are listed in table (I).

PREPARATION OF DISULFUO-DIAMINOCYCLODIPHOSPH(V) AZANE DERIVATIVES OF TYPE ($\mathrm{III}_{\mathtt{a-g}}$)

The solid amino compound (0.01) mole was added in small portions to a will stirred cold solution of the hexachlorocyclodiphosph(V)azane (I_{a-e}) (0.005 mole) in 100 ml acetonitrile during half hour. After the addition was completed the reaction mixture was heated under reflux for two hours with continous stirring. After the completion of the reaction (HCl gas ceased to evolve), then (0.32 g) of sulfur (solid) was added and the reaction mixture was heated under reflux for one hour with continous stirring.

The reaction mixture was filtered while hot at the pump. Then washed several times with acetonitrile then dry diethylether, disulfuoaminocyclodiphosph(V)azane (III_{a-g}) was obtained as solid crystals, (see table II).

Downloaded At: 16:13 28 January 2011

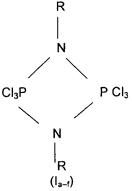
TABLE I Equimolar amounts and analytical data for amino cyclodipliosph(V) azane derivatives ($\Pi_{a,x}$)

No. of	Reactants	tants	1		7		Elements a	Elements analysis Calc./Found	ilc./Found	
Compd.	cyclodiphosphazane	Amino compound	m.p.c	coron	cotour Emptricat Jormula	2%C	H%	N%	d%	S%
Па	I _a (2.29g, 0.005 mole)	aniline (0.93g,0.01 mole)	250d	white	C ₂₄ H ₂₂ N ₄ P ₃ Cl ₄	50.50 50.60	3.50 3.90	9.82	10.87	
$\Pi_{\mathbf{b}}$	Ia (2.29g, 0.005mole)	p-toluidin (1.07g, 0.01mole)	153-155	pale cream	$C_{26}H_{26}N_4P_2CI_4$	1 1	1 1		10.36	1 1
п	Ia (2.29g, 0.005mole)	p-anisidine (1.23g;0.01mole)	136–138	pale gray	$C_{26}H_{26}N_4P_2CI_4O$	1 1	1 1	8.88	9.84 10.33	1 1
Π_{d}	$I_{\rm a} \\ (2.29 \rm g, 0.005 mole)$	p-chloroaniline (1.28g;0.01mole)	178–180	white	$\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{N}_4\mathrm{P}_2\mathrm{Cl}_6$	45.00 44.80	t I.	8.76 8.60	9.70 9.10	1 1
Пе	Ia (2.29g, 0.005mole)	2-aminothaiazol (1.02g;0.01mole)	184	pnff	$C_{18}H_{16}N_6P_2CI_4S_2$	36.98 37.10	2.73 3.05	14.38 14.00	10.61 9.84	10.95
$\Pi_{ f f}$	la (2.29g, 0.005 mole)	p-aminobenzoic acid (1.37g;0.01mole)	304 d	pale yellow	$C_{26}H_{22}N_4P_2CI_4O$	47.41 48.20	3.34 3.45	8.51 8.80	9.42 8.84	1 1
II	I _b (2.43g;0.005 mole)	aniline (0.93g;0.01mole)	184-186	white	$C_{26}H_{26}N_4P_2CI_4$	1 1) 1	9.36 9.50	10.36	1 1
II	I _b (2.43g;0.005mole)	p-toluidine (1.07g;0.01mole)	158-160	pale yellow	$\mathrm{C}_{28}\mathrm{H}_{30}\mathrm{H}_{4}\mathrm{P}_{2}\mathrm{Cl}_{4}$	1 1	1 1	8.94	9.90 9.20	1 1
Ϊ	l _b (2.43g ;0.005 mole)	p-chloroaniline (1.28g;0.01mole)	193–195 d	cream	$\mathrm{C}_{26}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{P}_{2}\mathrm{Cl}_{6}$	46.77 46.90	3.59 3.80	8.39 8.40	9.30	
ΞÎ	I _b (2.43g;0.005 mole)	2-aminothaiazol (1.02g;0.01mole)	P 091	buff	$C_{20}H_{20}N_6P_2Cl_4S_2$	39.21 39.00	3.27 3.50	13.72 13.50	10.13	10.45
$\Pi_{\mathbf{k}}$	I _c (2.58g;0.005 mole)	aniline (0.93g;0.01mole)	156	white	$C_{26}H_{26}N_4P_2CI_4O$	49.52 49.30	4.12	8.88	9.84 9.93	(1

	S%	, ,	•	•	ı	•	•	•	•	•	10.39
alc./Found	9%P	9.42 8.80	8.98	9.36	9.70	9.24	9.84	9.24	9.78	6.00	10.06
Elements analysis Calc./Found	N%	8.51 8.50	8.11	8.45	8.76	8.34	8.88	8.34	8.36	8.11	13.63
Elements	H%	1 1	4.34	,	1	1	4.12	1	3.47	3.18	2.60
	<i>3%</i> C		48.69	•	t	•	49.52	•	45.42	45.21	35.06
	colour Empirical Jormana	$C_{28}H_{30}N_4P_2Cl_4O$	$C_{20}H_{30}N_4P_2Cl_4O$	$C_{26}H_{26}N_4P_2Cl_4O$	$\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{N}_4\mathrm{P}_2\mathrm{Cl}_6$	$C_{24}H_{20}N_4P_2CI_6O$	$C_{26}H_{26}N_4P_2Cl_4O$	$C_{24}H_{30}N_4P_2Cl_6O$	$C_{24}H_{22}N_4P_2CI_4O$	$C_{26}H_{22}N_4P_2Cl_4O$	$C_{18}H_{16}N_6P_2CI_4O_2S_2$
	COLOUR	white	gray	white	white	cream	yellow	pink	white	pale yellow	pnff
0	m.p.c.	146–148	172	146	160–162	150 d	178–180 d	138-140	310 d	198-200	138–140 d
tants	Amino compound	p-toluidine (1.07g;0.01mole)	p-anisidine (1.23g:0.01mole)	2-aminophenol (1.09g;0.01mole)	aniline (0.93g;0.01mole)	2-aminophenol (1.09g;0.01mole)	p-toluidine (1.07g;0.01mole)	p-chloroaniline (1.28g;0.01mole)	2-aminophenol (1.09g;0.01mole)	2-aminobenzoic acid (1.37g;0.01mole)	2-aminothiazol (1.02g;0.01mole)
Reactants	cyclodiphosphazane	L _c (2.58g;0.005mole)	$I_{\rm c}$ (2.58g;0.005mole)	I _c (2.58g;0.005mole)	L _d (2.63g;0.005 mole)	I _d (2.63g ;0.005 mole)	I _c (2.45g ;0.005 mole)	I _c (2.45g;0.005 mole)	I _c (2.45g;0.005 mole)	I _c (2.45g ;0.005 mole)	L _c (2.45g;0.005 mole)
No. of	Compd.	II	IIm	II	По	П	III	II	П	IIw	ΙΙ ^x

d) means decomposed

Downloaded At: 16:13 28 January 2011


TABLE II Equimolar amount, and analytical data for the reaction of products 2,4-diamino cyclodiphosphazane dimer (II) with 0.32 g sulfur

No. Of	Reactants	nts	0	-		Element a	Element analysis Calc./Found	lc./Found
Compd.	Cyclodiphosphazane(I)	Amino Compound	m.pc-	Colour	Етріпсаі Јогтила	N%	<i>d</i> % <i>P</i>	S%
IIIa	I_a (2.29g; 0.005 mole)	aniline (0.93g; 0.01 mole)	120-122	pale yellow	C ₂₄ H ₂₂ N ₄ P ₂ S ₂	1 1	12.60	13.00
$\mathrm{III}_{\mathbf{b}}$	${\rm I_d\atop (2.63g~;~0.005~mole)}$	aniline (0.93g; 0.01 mole)	160-162	greenish yellow	$C_{24}H_{20}N_4P_2S_2O_2$	9.98 9.70	11.05	11.40
Шс	$\begin{array}{c} I_d \\ (2.63g~;~0.005~mole) \end{array}$	p – chloroaniline (1.28g; 0.01 mole)	230	pale yellow	$C_{24}H_{18}N_4P_2CI_4S_2$	8.88	9.84 9.16	1 1
Ш	I_c (2.58g; 0.005 mole)	p – toluidine (1.07g; 0.01 mole)	154	greenish yellow	$C_{28}H_{30}N_4P_2S_2O_2$	9.65 9.30	10.68	11.03
IIIe	$\frac{\mathrm{I_c}}{\mathrm{(2.58g~;~0.005~mole)}}$	aniline (0.93g; 0.01 mole)	154	greenish yellow	$C_{26}H_{26}N_4P_2S_2O_2$	10.14 9.90	11.23	1 1
$\Pi_{\mathbf{f}}$	I _c (2.58g; 0.005 mole)	p-chloroaniline (1.28g; 0.01 mole)	184–186	greenish yellow	$C_{26}H_{24}N_4P_2CI_2S_2O_2$	9.01 8.90	9.98 9.31	10.30 10.3010 .30
$_{\rm g}$	L _d (2.63g; 0.005 mole)	2-aminothiazol (1.02g; 0.01 mole)	142-144 d	pale brown	$C_{18}H_{14}N_6P_2Cl_2S_4$	14.60 14.20	10.78 10.30	22.26 22.00

(d) means decomposed.

Results and discussion

In the present work, different hexachlorocyclodiphosphazanes of type (I_{a-e}) have been prepared essentially by the method described in the literature ($^{(2-4)}$)

$$I_a; R = C_6H_5$$

$$I_a; R = C_6H_5$$

$$I_b; R = C_6H_4 - CH_3 - p$$

$$I_c; R = C_6H_4 - OCH_3 - p$$

$$I_d; R = C_6H_4 - Cl - p$$

$$I_e; R = C_6H_4 - OH - o$$

The direct reaction between halophosphazanes (I) and amino aromatic compounds in acetonitrile led to the formation of geminal amino cyclodiphosphazane derivatives of type (II_{a-x}).

No. Of Compd.	R	R ⁻
IIa	C ₆ H ₅	C ₆ H ₅
II_b	C_6H_5	$C_6H_4 - CH_3 - p$

No. Of Compd.	R	R ⁻
II _c	C ₆ H ₅	$C_6H_5 - OCF_H - p$
$\Pi_{\mathbf{d}}$	C_6H_5	$C_6H_4 - Cl - p$
II_e	C_6H_5	$C_3H_2NS - \alpha$
$\Pi_{\mathbf{f}}$	C_6H_5	$C_6H_4 - COOH - p$
Π_{g}	$C_6H_4 - CH_3 - p$	C_6H_5
II_h	$C_6H_4 - CH_3 - p$	$C_6H_4 - CH_3 - p$
Π_i	$C_6H_4 - CH_3 - p$	$C_6H_4 - Cl - p$
II_{j}	$C_6H_4 - CH_3 - p$	$C_3H_2NS - \alpha$
$II_{\mathbf{k}}$	$C_6H_4 - OCH_3 - p$	C_6H_5
II_1	$C_6H_4 - OCH_3 - p$	$C_6H_4 - CH3 - p$
II _m	$C_6H_4 - OCH_3 - p$	$C_6H_4 - OCH_3 - p$
II _n	$C_6H_4 - OCH_3 - p$	$C_6H_4 - OH - o$
II_o	$C_6H_4 - Cl - p$	C_6H_5
$H_{\mathbf{p}}$	$C_6H_4 - Cl - p$	$C_6H_4 - CH_3 - p$
$\mathbf{H}_{\mathbf{q}}$	$C_6H_4 - Cl - p$	$C_6H_4 - OCH_3 - p$
II_r	$C_6H_4 - CI - p$	$C_6H_4 - Cl - p$
II_s	$C_6H_4 - Cl - p$	$C_6H_4 - OH - o$
II _t	$C_6H_4 - OH - o$	$C_6H_4 - CH_3 - p$
II_u	$C_6H_4 - OH - o$	$C_6H_4 - Cl - p$
$\Pi_{\mathbf{v}}$	$C_6H_4 - OH - o$	$C_6H_4 - OH - o$
${ m II}_{f w}$	$C_6H_4 - OH - o$	$C_6H_4 - COOH - o$
II _x	$C_6H_4 - OH - o$	$C_3H_2NS - \alpha$

The structure of these compounds has been substantiated on the basis of the following points:

- i. Elemental analysis are in good agreement with the proposed structures (see table I)
- ii. The infrared spectra of these compounds showed the characteristic absorption bands, which are summarized in table (III)
- iii. 1 H n.m.r. spectra of the isolated compounds (I-II) showed the aromatic proton signal at delta $\delta = 7.4$ ppm and a signal characteristic for CH₃protons and -OCH₃ protons at $\delta = 2.1$ ppm and 3.8 ppm respectively, the characteristic proton signals are listed in table (IV).
- iv. Mass spectrometric measurements shed light on the structure of these products, thus the spectra showed the mole peaks for many compounds which are given in table (V), also most of the expected fragments were observed in the spectra.

Further confirmation of the structural assignment of these products was gleaned from the preparation of sulfur derivative. Thus the interaction of hexachlorocyclodiphosphazane (I) and aminocompounds in the presence of sulfur solid in acetonitrile led to the formation of a well defined material which gave analytical data suggesting structure (III_{a-g}).

No.of Compound	R	R ⁻
III _a	C ₆ H ₅	C ₆ H ₅
$III_{\mathbf{b}}$	$C_6H_4 - Cl - p$	C_6H_5
$\mathrm{III}_{\mathbf{c}}$	$C_6H_4 - Cl - p$	$C_6H_4 - Cl - p$
III_d	$C_6H_4 - OCH_3 - p$	$C_6H_4 - CH_3 - p$
III _e	$C_6H_4 - OCH_3 p$	C_6H_5
$III_{\mathbf{f}}$	$C_6H_4 - OCH_3 - p$	C_6H_4 - $Cl-p$
$III_{\mathbf{g}}$	$C_6H_4 - Cl - p$	$C_3H_2NS - \alpha$

The Assignment of the products (III_{a-g}) was based on elemental analysis which are in good agreement with the proposed structures (III_{a-g}) (See table II).

TABLE III Infrared of Compounds (II_{a-x})

		Strertchin	g Frequenc	cies in Cm ⁻¹		
No. of Comp.d	v N -H	v P-N-H	v OH	v P-N	v disub. Ar. ring	v P-Cl
IIa	3360(w)	2560(w)	-	1175(w)		465(s)
II_b	3050(br)	2600(br)	-	1140(w)	850 (s)	500(w)
II_c	3000(br)	2560(br)	-	1160(w)	845(v.s)	500(s)

		Strertchir	g Frequenc	ies in Cm ⁻¹		
No. of Comp.d	v N-H	v P-N-H	v OH	v P-N	v disub. Ar. ring	v P-Cl
—II _d	3300(br)	2660(v.w)	-	1180(w)	850(s)	500(w)
II_e	3400(br)	2750(br)	-	1180(w)	845(m)	490(br)
II_f	3340(w)	2600(br)	-	1190(w)	860(s)	450(br)
$\Pi_{\mathbf{g}}$	3020(br)	2600(w)	-	1170(v.w)	860(s)	470(w)
II _h	3000(br)	2600(w)	-	1190(m)	850(s)	470(m)
$\mathbf{H}_{\mathbf{i}}$	3000(br)	2590(w)	-	1175(w)	860(s)	470(w)
II_{j}	3000(br)	2550(br)	-	1150(w)	860(m)	475(w)
II_k	3000(br)	2600(v.w)	-	1170(w)	810(m)	450(br)
Π_1	3360(br)	2600(br)	-	1170(w)	815(s)	460(br)
II _m	3000(br)	2600(w)	-	1160(m)	810(s)	460(br)
II _n	3000(br)	2570(br)	1370(m)	1160(w)	820(s)	460(w)
II_{o}	3000(br)	2600(m)	-	1170(w)	870(s)	470(br)
$\Pi_{\mathbf{p}}$	3350(br)	2740(br)	-	1150(m)	830(s)	510(w)
$\Pi_{\mathbf{q}}$	3000(br)	2600(br)	-	1160(s)	860(v.s)	480(br)
II_r	3350(v.w)	2750(m)	-	1170(s)	820(v.s)	480(s)
II_s	3350(br)	2600(br)	1360(m)	1200(s)	830(s)	480(s)
II_{t}	3200(br)	2600(m)	1360(s)	1175(v.w)	845(m)	480(m)
$II_{\mathbf{u}}$	3050(br)	2610(br)	1360(s)	1180(w)	820(s)	480(w)
$\Pi_{\mathbf{v}}$	3280(s)	2610(w)	1365(v.s)	1165(v.s)	840(m)	470(s)
$\Pi_{\mathbf{W}}$	3200(br)	2760(br)	1350(s)	1160(m)	845(m)	460(br)
II_x	3100(br)	2600(br)	1340(m)	1160(m)	830(br)	450(m)

(v.w) means very weak. (m) means moderate. (v.s) means very strong. (w) means weak. (s) means strong. (br) means broud

TABLE IV ¹Hn.m.r. data for compounds (I-II)

		Chemical Si	hifts δ in ppm		
No. of compd.	CH_3	OCH ₃	Aromatic	NH	ОН
Ia	-	-	6.90	-	
I_b	2.2	-	7.15	-	-
I_c	-	3.7	7.10	-	-
I_d	-	-	7.36	-	-
I_f	-	-	7.30	-	-

		Chemical Si	hifts δ in ppm		
No. of compd.	СН3	<i>ОСН</i> ₃	Aromatic	NH	ОН
IIa	-	-	7.30	5.2	-
II_b	2.2	-	7.35	6.8	-
II_c	-	3.7	7.10	6.8	-
II_d	-	-	7.17	6.8	-
II_e	-	-	7.10	8.0	-
IIi	2.3	-	7.10	6.6	-
IIo	-	-	7.36	4.8	-
II_x	-	-	7.00	5.4	9.5

TABLE V Mass Spectra For Compounds (I-II)

No of compound		Mole peak	
No.of compound —	Calc.	Found	Abundance %
la	457	457	0.05
II_a	570	569	0.10
II _b	598	597.5	0.03
II_c	630	630	0.01
II_d	639	637.9	0.23
IIe	584	588.5	0.04
II_i	667	667	0.03
II _t	630	630.5	0.01
$II_{\mathbf{v}}$	634	633.9	3.09
II _x	616	616	0.02

TABLE VI Infrared data for compound (III_{a-g})

		Stretching Freq	uencies in Cn	1-1	
No of Compd	v N-H	v P-N-H	v P-N	v disub. Ar. ring	vP = S
IIIa	3350(v.w)	2500(br)	1180(w)		670(s)
III _b	3000(br)	2680(v.w)	1170(w)	860 (m)	630(m)
III_{c}	3300(br)	2690(w)	1170(w)	850(w)	660(m)
III_d	3100(br)	2740(br)	1190(s)	820(v.s)	660(s)
III_e	3300	2710(br)	1160(w)	840(w)	640(m)
III _f	3000(br)	2800(br)	1170(m)	820(s)	620(w)
III _g	3300(br)	2740(br)	1150(w)	810(w)	660(m)

(v.w) means very weak. (m) means moderate. (v.s) means very strong. (w) means weak. (s) means strong. (br) means broad.

The infrared spectra for these products (III $_{a-g}$) showed the characteristic vNH stretching vibrations at $\lambda = 3400-3100$ cm $^{-1}$, vP-N-H stretching mode at 2700–2500 cm $^{-1}$, and vP = S stretching mode at $\lambda = 620-670$ cm $^{-1}$ the data are listed in table (VI). The mass spectra for compounds of type (III $_{a-g}$) showed the expected fragments.

Ultraviolet spectra

The fact that the expected band between 270–290 nm⁽⁵⁾, characteristic for electron delocalization within the four-membered ring of the dimeric structure, was observed in the spectra for compounds of type(I-III)suggests the presence of the phosphazo four-membered ring. The ultraviolet spectrum for compound (I_a), show an absorption peak at λ max =283.9 nm (extinction coefficient=379.8), this band was shifted to lower wave length and high intensity of peak upon placement of groups having (+ I and + M effects) such as-CH₃(I_b), -OCH₃ (I_c) in the para and/or-OH(I_e) in the ortho position of the chromophoric system. (phenyl group) attached to nitrogen atom of the phosphazo ring while upon placement of -Cl atom (I_d), the band was shifted to a longer wale length with an increase in the intensity of the band (Fig. 1) and Table(VII).

I_a; R=-H I_b; R-CH₃-p I_c; R=-OCH₃-p I_d; R=-Cl-p I_e; R=-OH-o

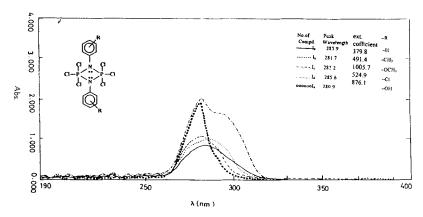


FIGURE 1 Ultraviolet Spectra for Compounds(I_{a-e}) in ethanol

TABLE VII Ultraviolet spectral data for compounds (I- III)

No. of compound	λ max in nm	ext.coeff
Ia	283.9	379.8
I_{b}	281.7	491.4
$\mathbf{I_c}$	282.2	1005.7
Id	285.6	524.9
I_e	280.9	876.1
II_a	275.5	502.7
II _b	277.8	653.0
$\Pi_{\mathbf{c}}$	280.2	895.9
II_d	281.8	1528.5
ΙΙ _e	300.0	1868.8
III _a	283.1	933.3
III _b	286.3	1348.9
III_c	289.5	1848.9
${ m III_d}$	287.9	1614.2
III_e	290.0	1835.3
${ m III}_{ m f}$	283.6	1656.8
III_{g}	300.7	1936.8

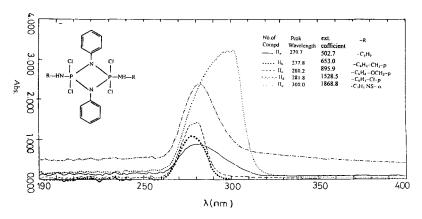


FIGURE 2 Ultraviolet Spectra for Compounds(II_{a-e}) in ethanol

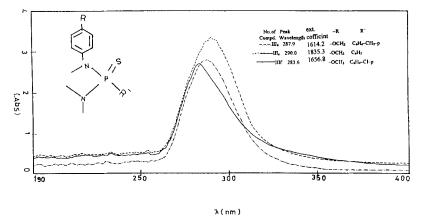


FIGURE 3 U.v spectra for Compounds ($III_{d,e,f}$)

On placement of chlorine atom on phosphorus by electron with drawing groups (-I effects), (+M effects)(II_d) or chromophoric groups containing conjugated system such as thiazol ring (II_e) show an absorption peak at $\lambda=281.8 \mathrm{nm}$ (extinction coefficient 1528.5) and at $\lambda=300.0 \mathrm{nm}$ (extinction coefficient 1839.8) respectively, while the replacement of the chlorine atom on phosphorus by groups with donating electrons (+I or +M) such as tolyl or anisidyl groups (II_b and II_c) stabilize the resonance within the four-membered ring (Fig. 2)

SCHEME 1 fragmentation pathway for compound (IIe)

Replacement of of the dichloro atoms on phosphorous in compounds of type (II) by a sulfur atom led to an increase in the intensity of the absorption peak, and the band was shifted to longer wave length may be due to the differences in electronegativity between phosphorous and sulfur, (III_{d,e,f}) Fig (3) the data are listed in table (VII). We concluded by the electron delocalization within the phosphazoring are much affected by groups having electron attracting or electron donating character attached to phosphorus atom, because such groups are in plane with phosphorus and nitrogen atoms of phosphazo-ring. Fig.(4).

References

- Abd-Ellah, I.M; Ibmhh% E.H.M; and El-Khazandar, AN; J. Phosph. and sulfur, 31,13 (1987), Phosph. and sulfur, 33, 109 (1987).
- [2] Abd-Ellah, I.M; Ibrahim, E.H.M; and El-Khazandar, A.N; J. Sci. Ind. Res., 31(6),395 (1988).

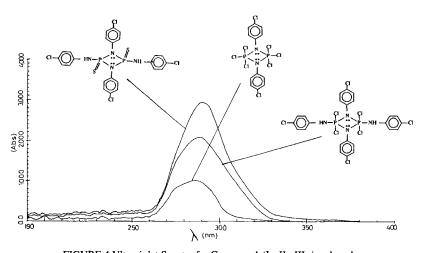


FIGURE 4 Ultraviolet Spectra for Compounds(l_d , II_r , III_c in ethanol

- [3] Chapman, A.C., Padddock, N.L. and Searle, H.T., J. Chem. Soc., 1825 (1961).
- [4] Kirsanov, A.V., Zhmurova, I.N. andObsch. Khim., Zh. 32,2576 (1963).
- [5] Abd-Ellah, I.M; Ibrahim, E.H.M; and El-Khazandar, A.N; J. Phosph. and sulfur, vol.29, 239(1987)